

Three-Dimensional Characterization of Atmospheric Gravity Waves Using Thermal Radiance Imagery from AIRS and AMSU-A

EARTH SYSTEM SCIENCE RESEARCH USING DATA AND PRODUCTS FROM TERRA, AQUA, AND ACRIMSAT SATELLITES

NASA ROSES – NNH06ZDA001N

Program Element A.15

Project 06-EOS/06-0203

Steve Eckermann

Naval Research Laboratory (NRL), Washington, DC

Dong Wu

NASA/JPL, Pasadena, CA

Joan Alexander & Allison Grimsdell

Northwest Research Associates, Boulder, CO

Chris Barnet, Lars Hoffmann....

Integrating Separate AMSU-A and AIRS Research on Stratospheric Gravity Waves

AMSU-A-only Research

Eckermann and Wu, ACP, 2006 Eckermann et al., ACP, 2006

Alexander and Barnet, JAS, 2007

Combined Analysis of Synchronous AIRS/AMSU-A Radiances from Aqua for Gravity Waves

Analysis of Gravity Waves in AIRS/AMSU/HSB (AAH)

Temperature Retrievals

SCIENCE GOAL: Global 3D Characterizations of Stratospheric Gravity Waves for Constraining Subgrid-scale Parameterizations of Large-scale Gravity Wave Effects in NWP & Climate Models

Illustrate Overall Science Goals in Application to One Orographic Gravity Wave Event

1. Are Gravity Waves Resolved in AMSU-A Thermal Radiances?

ECMWF IFS, NOGAPS-ALPHA and COAMPS® Hindcast T' Fields: 14 Jan 2003 1200 UTC

Temperature Perturbations at 90 hPa: +24 hour forecast for 14 January 2003 at 1200 UTC (a) ECMWF IFS (T_L511L60) (b) NOGAPS-ALPHA (T239L60) (c) COAMPS (10x10 km Nest) (d) ECMWF IFS (T_L511L60) (e) NOGAPS-ALPHA (T239L60) (g) ECMWF IFS (T, 511L60) Cross Section (h) NOGAPS-ALPHA (T239L60) Cross Section (i) COAMPS (10x10 km Nest) Cross Section AMSU-A Ch.9 pressure height (km) pressure (hPa) 1000 1000 0.000 0.025 0.050 600 800 1000 1000 weighting horizontal distance (km) horizontal distance (km) horizontal distance (km)

AMSU-A Channel 9 Brightness Temperature Perturbations (T'_B)

AMSU-A EOS Aqua 1229 UTC

Are Gravity Waves Resolved in AMSU-A Thermal Radiances? Looks Promising...

→ Validate Using 3D Forward Model

Extension to Other AMSU-A Channels

Model-Data Comparison by 3D Forward Modeling (Simulate AMSU-A Measurement of Modeled T(X,Y,Z) Fields)

$$T_B(X_j, Y_J, Z_j) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{0}^{\infty} W_j(X - X_j, Y - Y_J, Z - Z_j) T(X, Y, Z) dX dY dZ$$

Channel 9: 60-90 hPa

Cross Sectional Comparisons

Point-by-Point Comparisons

Are Gravity Waves Resolved in AMSU-A Thermal Radiances?

Yes!

(but not as well as in AIRS radiances...)

What about other AMSU and AIRS Channels?

Increasing altitude

AMSU-A Channels 9-14 Radiances: 14 January 2003

Multichannel AIRS Radiances: 14 Jan 2003

AIRS/AMSU Temperature Retrievals

New Science from This Mountain Wave Observation

What Causes the Abrupt Phase Line Orientation Change at the Channel 11-12 Interface at ~10 hPa?

Wind Speeds and Directions

Mountain Wave Modeling

Fourier-Ray T' solutions for 3D elliptical obstacle

Validation of High-Resolution High-Altitude NWP Models

High-Resolution NWP Model Runs

explicitly-resolved mountain wave breaking and drag

3.0 0

0.05

 $w_i(\mathbf{Z})(\mathrm{km}^{-1})$

0.1

2.0

1.5

 $\Delta Z_k (km)$

0.5

NWP Model Validation using AMSU-A

Future Work

Fully Integrated AIRS/AMSU Analysis of a Variety of Gravity Wave Events

 Collaborative characterization of global gravity wave properties, sources, and momentum fluxes using all the tools we have available in the AIRS/AMSU kit....

Stratospheric Gravity Waves Generated by Deep Tropical Convection: 14 Jan 2003

The End

Thanks!

Backup Slides Follow...

For More Details, see....

- Eckermann, S. D., D. L. Wu, J. D. Doyle, L. Coy, J. P. McCormack, A. Stephens, B. N. Lawrence, and T. F. Hogan, Imaging gravity waves in lower stratospheric AMSU-A radiances, *SPARC Newsletter*, *26*, 30-33, 2006.
- Eckermann, S. D., and D. L. Wu, Imaging gravity waves in lower stratospheric AMSU-A radiances, Part 1: Simple forward model, *Atmos. Chem. Phys.*, *6*, 3325-3341, 2006.
- Eckermann, S. D., D. L. Wu, J. D. Doyle, J. F. Burris, T. J. McGee, C. A. Hostetler, L. Coy, B. N. Lawrence, A. Stephens, J. P. McCormack, and T. F. Hogan, Imaging gravity waves in lower stratospheric AMSU-A radiances, Part 2: Validation case study, *Atmos. Chem. Phys.*, 6, 3343-3362, 2006.
- Eckermann, S. D., J. Ma, D. L. Wu, and D. Broutman, A three-dimensional mountain wave imaged in satellite radiance throughout the stratosphere: Evidence of the effects of directional wind shear, *Quart. J. Roy. Meteorol. Soc., (in press), 2007.*

DC-8 Flight Time (UTC)

SOLVE-II DC-8 Flight of 14 January

GSFC)

Mountain Wave PSCs

Aerosol Backscatter Coefficients (ABR) from 0930 NASA Langley Lidar on DC-8

Mean Sea Level Pressures

(a) 14 January 2003: 0000 UTC (b) 14 January 2003: 1200 UTC

High Tropopause with High Relative Humdity

12 UTC on 14 January, 2003 on the 217.0 mb surface

Trop (EPV=2.5) Asc (4 mb/hr)

Desc (4 mb/hr)

AIRS Result for 14 Jan 2003

EOS Aqua 1229 UTC: AIRS 80 hPa Channel

Time Evolution

AMSU-A on 4 Satellites (8 overpasses per day)

Very High Resolution Numerical Weather Prediction (NWP) Model Runs

NWP Model	Resolution	$\Delta \phi$ (Δx)	$p_{TOP}\left(z_{TOP}\right)$	Vertical Coordinate
ECMWF IFS	T _L 511 L60	0.35° (~40km)	0.1 hPa (~65 km)	hybrid <i>σ-p</i>
NOGAPS-ALPHA	T239 L60	0.5° (~55 km)	0.005 hPa (~85 km)	hybrid <i>σ-p</i>
COAMPS®	169x169 L85	30x30 & 10x10 km² (nest)	(~33 km)	σ

3D Temperature Weighting Functions From AMSU-A Channel 9

$$T_B(X_j, Y_J, Z_j) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{0}^{\infty} W_j(X - X_j, Y - Y_J, Z - Z_j) T(X, Y, Z) dX dY dZ$$

Brightness temperature (microwave radiance)

3D AMSU-A Measurement Weighting Function

Atmospheric temperature

2D Cross Sections in (Y,Z) Plane

Horizontal "Footprints" (X,Y) Plane

$(\Delta X, \Delta Y) \sim 50-150$ km, $\Delta Z \sim 8$ km

Suggests AMSU-A Channel 9 Radiances Might Resolve Long Wavelength GWs (λ $_{\rm Y}$ >150km, $\lambda_{\rm Z}$ >10 km)

Objective Validation of Subgrid-scale Orographic Gravity Wave Drag Schemes

